Lower eigenvalue bounds for singular pencils of matrices
نویسندگان
چکیده
منابع مشابه
Eigenvalue variance bounds for covariance matrices
This work is concerned with finite range bounds on the variance of individual eigenvalues of random covariance matrices, both in the bulk and at the edge of the spectrum. In a preceding paper, the author established analogous results for Wigner matrices [7] and stated the results for covariance matrices. They are proved in the present paper. Relying on the LUE example, which needs to be investi...
متن کاملLower Bounds of Copson Type for Hausdorff Matrices on Weighted Sequence Spaces
Let = be a non-negative matrix. Denote by the supremum of those , satisfying the following inequality: where , , and also is increasing, non-negative sequence of real numbers. If we used instead of The purpose of this paper is to establish a Hardy type formula for , where is Hausdorff matrix and A similar result is also established for where In particular, we apply o...
متن کاملLower Bounds for the Smallest Singular Value of Structured Random Matrices
We obtain lower tail estimates for the smallest singular value of random matrices with independent but non-identically distributed entries. Specifically, we consider n× n matrices with complex entries of the form M = A ◦X +B = (aijξij + bij) where X = (ξij) has iid centered entries of unit variance and A and B are fixed matrices. In our main result we obtain polynomial bounds on the smallest si...
متن کاملSingular value inequalities for positive semidefinite matrices
In this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl. 308 (2000) 203-211] and [Linear Algebra Appl. 428 (2008) 2177-2191].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 1992
ISSN: 0377-0427
DOI: 10.1016/0377-0427(92)90208-f